Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
J Fluoresc ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625574

ABSTRACT

Folic acid (FA) is a water-soluble vitamin found in diverse natural sources and is crucial for preserving human health. The risk of health issues due to FA deficiency underscores the need for a straightforward and sensitive FA detection methodology. Carbon dots (CDs) have gained significant attention owing to their exceptional fluorescence performance, biocompatibility, and easy accessibility. Consequently, numerous research studies have concentrated on developing advanced CD fluorescent probes to enable swift and precise FA detection. Despite these efforts, there is still a requirement for a thorough overview of the efficient synthesis of CDs and their practical applications in FA detection to further promote the widespread use of CDs. This review paper focuses on the practical applications of CD sensors for FA detection. It begins with an in-depth introduction to FA and CDs. Following that, based on various synthetic approaches, the prepared CDs are classified into diverse detection methods, such as single sensing, visual detection, and electrochemical methods. Furthermore, persistent challenges and potential avenues are highlighted for future research to provide valuable insights into crafting effective CDs and detecting FA.

2.
Int J Biol Macromol ; 265(Pt 1): 130751, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471616

ABSTRACT

The challenge in front of EDLC device is their low energy density compared to their battery counter parts. In the current study, a green plasticized nanocomposite sodium ion conducting polymer blend electrolytes (PNSPBE) was developed by incorporating plasticized Chitosan (CS) blended with polyvinyl alcohol (PVA), doped with NaBr salt with various concentration of CaTiO3 nanoparticles. The most optimized PNSPBE film was subsequently utilized in an EDLC device to evaluate its effectiveness both as an electrolyte and a separator. Structural and morphological changes were assessed using XRD and SEM techniques. The PNSPBE film demonstrated a peak ionic conductivity of 9.76×10-5 S/cm, as determined through EIS analysis. The dielectric and AC studies provided further confirmation of structural modifications within the sample. Both TNM and LSV analyses affirmed the suitability of the prepared electrolyte for energy device applications, evidenced by its adequate ion transference number and an electrochemical potential window of 2.86 V. Electrochemical properties were assessed via CV and GCD techniques, confirming non-Faradaic ion storage, indicated by the rectangular CV pattern at low scan rates. The parameters associated with the designed EDLC device including specific capacitance, ESR, power density (1950 W/kg) and energy density (12.3 Wh/kg) were determined over 1000 cycles.


Subject(s)
Chitosan , Polymers , Polymers/chemistry , Chitosan/chemistry , Sodium , Electrolytes/chemistry , Ions/chemistry
3.
Heliyon ; 10(5): e27029, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468939

ABSTRACT

In this study, first-principles calculations using Density Functional Theory (DFT) have been conducted, which were carried out using the Vienna Ab initio Simulation Package (VASP) to examine the effect of Tl insertion on electronic and optical properties of the α-Al2O3. Alumina materials are abundant and the main shortcoming of alumina for photocatalyst applications is their large energy band gap and little absorption in the visible region of electromagnetic (EM) radiation. Insertion of transition metals (TM) into semiconductor or insulating materials is a hot approach to improve the absorption behavior of these materials using DFT assessment. In the current work an analysis of the band structure (BS) and the density of states (DOS); comprising both the total density of states (TDOS) as well as the partial density of states (PDOS) were carried out. The BS diagram revealed that various concentrations of Tl insertion into the α-Al2O3 reduced the band gap to 2.38 eV. In the density of state diagram, the band gap energy shifted to lower photon energies with increasing Tl concentrations which supports the BS results. The band gap obtained from the first peak in the imaginary part of dielectric function is close enough to those established from the BS diagram. Distinguished shifting of absorption coefficient to lower photon energy (2.27 eV) reveals the suitability of the doped α-Al2O3 for various applications. The increase of refractive index (n) with increasing of Tl into the α-Al2O3 structure is evidence for the increase of charge, which is a source for polarization and attenuates the velocity of light in a medium. The increase of optical conductivity with photon energy started after band gap values. The reflectance, absorbance and transmittance results indicate that the doped α-Al2O3 is responsive to the visible region of EM radiation while in pure state almost transparent.

4.
ACS Nano ; 18(14): 10230-10242, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38546180

ABSTRACT

The realization of sodium-ion devices with high-power density and long-cycle capability is challenging due to the difficulties of carrier diffusion and electrode fragmentation in transition metal selenide anodes. Herein, a Mo/W-based metal-organic framework is constructed by a one-step method through rational selection, after which MoWSe/C heterostructures with large angles are synthesized by a facile selenization/carbonization strategy. Through physical characterization and theoretical calculations, the synthesized MoWSe/C electrode delivers obvious structural advantages and excellent electrochemical performance in an ethylene glycol dimethyl ether electrolyte. Furthermore, the electrochemical vehicle mechanism of ions in the electrolyte is systematically revealed through comparative analyses. Resultantly, ether-based electrolytes advantageously construct stable solid electrolyte interfaces and avoid electrolyte decomposition. Based on the above benefits, the Na half-cell assembled with MoWSe/C electrodes demonstrated excellent rate capability and a high specific capacity of 347.3 mA h g-1 even after cycling 2000 cycles at 10 A g-1. Meanwhile, the constructed sodium-ion capacitor maintains ∼80% capacity retention after 11,000 ultralong cycles at a high-power density of 3800 W kg-1. The findings can broaden the mechanistic understanding of conversion anodes in different electrolytes and provide a reference for the structural design of anodes with high capacity, fast kinetics, and long-cycle stability.

5.
RSC Adv ; 14(8): 5012-5021, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38332781

ABSTRACT

Carbon dots (CDs) are valued for their biocompatibility, easy fabrication, and distinct optical characteristics. The current study examines using whey to fabricate CDs using the hydrothermal method. When stimulated at 350 nm, the synthetic CDs emitted blue light at 423 nm and revealed a selective response to ferric ion (Fe3+) in actual samples with great sensitivity, making them a suitable probe for assessing Fe3+ ions. The produced carbon dots demonstrated great photostability, high sensitivity, and outstanding biocompatibility. The findings showed that Fe3+ ions could be quickly, sensitively, and extremely selectively detected in an aqueous solution of carbon dots, with a revealing limit of 0.409 µM in the linear range of 0-180 µM. Interestingly, this recognition boundary is far inferior to the WHO-recommended threshold of 0.77 µM. Two metric tools which were AGREE and the ComplexGAPI were also used to evaluate the method's greenness. The evaluation confirmed its superior environmental friendliness.

6.
RSC Adv ; 13(49): 34534-34555, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38024963

ABSTRACT

In the present study, a novel series of azo-thiazole derivatives (3a-c) containing a thiazole moiety was successfully synthesized. The structure of these derivatives was examined by spectroscopic techniques, including 1H NMR, 13C NMR, FT-IR, and HRMS. Further, the novel synthesized compounds were evaluated for their in vitro biological activities, such as antibacterial and anti-inflammatory activities, and an in silico study was performed. The antibacterial results demonstrated that compounds 3a and 3c (MIC = 10 µg mL-1) have a notable potency against Staphylococcus aureus compared to azithromycin (MIC = 40 µg mL-1). Alternatively, compound 3b displayed a four-fold higher potency (24 recovery days, 1.83 mg day-1) than Hamazine (28 recovery days, 4.14 mg day-1) in promoting burn wound healing, and it also exhibited a comparable inhibitory activity against screened bacterial pathogens compared to the reference drug. Docking on 1KZN, considering the excellent impact of compounds on the crystal structure of E. coli1KZN, a 24 kDa domain, in complex with clorobiocin, indicated the close binding of compounds 3a-c with the active site of the 1KZN protein, which is consistent with their observed biological activity. Additionally, we conducted molecular dynamics simulations on the docked complexes of compounds 3a-c with 1KZN retrieved from the PDB to assess their stability and molecular interactions. Furthermore, we assessed their electrochemical characteristics via DFT calculations. Employing PASS and pkCSM platforms, we gained insights into controlling the bioactivity and physicochemical features of these compounds, highlighting their potential as new active agents.

7.
Sci Rep ; 13(1): 21139, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036635

ABSTRACT

This study introduces a novel system of solid electrolytes for electrical double-layer capacitors (EDLCs) utilizing biopolymer electrolytes with high energy density comparable to NiMH batteries. To prepare the electrolytes, a proton-conducting plasticized chitosan: poly(2-oxazoline) (POZ) with good film-forming properties was fabricated using a solution casting technique, and ammonium trifluoromethanesulfonate (NH4CF3SO3) salt was employed as a proton provider. Various glycerol concentrations were incorporated into the chitosan:POZ: NH4CF3SO3 system to enhance the ionic conductivity and fully transparent films were obtained. The impedance technique was utilized to determine the conductivity and measure the diffusion coefficient, mobility, and number density of ions. The electrochemical measurements, including linear sweep voltammetry (LSV) and cyclic voltammetry (CV), validated the high performance of the system. The EDLC was examined using galvanostatic charge-discharge (GCD) equipment, and the results revealed an energy density of 43 Wh/kg, specific capacitance of 300 F/g, and power density of 1800 W/kg over 500 cycles. These findings suggest that it is plausible to develop EDLCs that resemble batteries, making them a more desirable energy storage option for the industry.

8.
Nanomaterials (Basel) ; 13(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37110913

ABSTRACT

Nanoparticles (NPs) have attracted considerable interest in numerous fields, including agriculture, medicine, the environment, and engineering. The use of green synthesis techniques that employ natural reducing agents to reduce metal ions and form NPs is of particular interest. This study investigates the use of green tea (GT) extract as a reducing agent for the synthesis of silver NPs (Ag NPs) with crystalline structure. Several analytical techniques, including UV-visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD), were used to characterize the synthesized Ag NPs. The results of UV-vis revealed that the biosynthesized Ag NPs exhibited an absorbance plasmonic resonance peak at 470 nm. According to FTIR analyses, the attachment of Ag NPs to polyphenolic compounds resulted in a decrease in intensity and band shifting. In addition, the XRD analysis confirmed the presence of sharp crystalline peaks associated with face-centered cubic Ag NPs. Moreover, HR-TEM revealed that the synthesized particles were spherical and 50 nm in size on average. The Ag NPs demonstrated promising antimicrobial activity against Gram-positive (GP) bacteria, Brevibacterium luteolum and Staphylococcus aureus, and Gram-negative (GN) bacteria, Pseudomonas aeruginosa and Escherichia coli, with a minimal inhibitory concentration (MIC) of 6.4 mg/mL for GN and 12.8 mg/mL for GP. Overall, these findings suggest that Ag NPs can be utilized as effective antimicrobial agents.

9.
Polymers (Basel) ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36772071

ABSTRACT

In this study, a green chemistry method was used to synthesize polymer composites based on polyethylene oxide (PEO). The method of the remediation of metal complexes used in this study is an environmentally friendly procedure with a low cost. Zinc metal ion (Zn2+)-polyphenol (PPHNL) complexes were synthesized for two minutes via the combination of a black tea leaf (BTL) extract solution with dissolved Zn-acetate. Then, UV-Vis and FTIR were carried out for the Zn-PPHNL complexes in a liquid and solid. The FTIR spectra show that BTLs contain sufficient functional groups (O-H, C-H, C=O, C=C, C-O, C-N, and N-H), PPHNL, and conjugated double bonds to produce metal complexes by capturing the cations of Zn-acetate salt. Moreover, FTIR of the BTL and Zn-PPHNL complexes approves the formation of the Zn-PPHNL complex over the wide variation in the intensity of bands. The UV absorption spectra of BTL and Zn-PPHNL indicate complex formation among tea PPHNL and Zn cations, which enhances the absorption spectra of the Zn-PPHNL to 0.1 compared to the figure of 0.01 associated with the extracted tea solution. According to an XRD analysis, an amorphous Zn-PPHNL complex was created when Zn2+ ions and PPHNL interacted. Additionally, XRD shows that the structure of the PEO composite becomes a more amorphous structure as the concentration of Zn-PPHNL increases. Furthermore, morphological study via an optical microscope (OM) shows that by increasing the concentration of Zn-PPHNL in a PEO polymer composite the size of the spherulites ascribed to the crystalline phase dramatically decreases. The optical properties of PEO: Zn-PPHNL films, via UV-Vis spectroscopy, were rigorously studied. The Eg is calculated by examining the dielectric loss, which is reduced from 5.5 eV to 0.6 eV by increasing the concentration of Zn-PPHNL in the PEO samples. In addition, Tauc's form was used to specify the category of electronic transitions in the PEO: Zn-PPHNL films. The impact of crystalline structure and morphology on electronic transition types was discussed. Macroscopic measurable parameters, such as the refractive index and extinction coefficient, were used to determine optical dielectric loss. Fundamental optical dielectric functions were used to determine some key parameters. From the viewpoint of quantum transport, electron transitions were discussed. The merit of this work is that microscopic processes related to electron transition from the VB to the CB can be interpreted interms of measurable macroscopic quantities.

10.
Polymers (Basel) ; 14(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36433172

ABSTRACT

A solution casting method has been utilisedto fabricate plasticisednatural gelatin (NG)-based polymer electrolyte films. The NG electrolyte with 50 wt.% glycerol and 13 wt.% sodium nitrate (NaNO3) attained the highest ionic conductivity of 1.67 × 10-4 S cm-1. Numerous techniques were used to characterisethe NG films to assess their electrochemical performance. The data obtained from impedance spectroscopy for the plasticisedsystem, such as bulk resistance (Rb), arerelatively low. Thiscomprehensive study has been focused on dielectric characteristics and electric modulus parameters. The plasticisedsystem has shown eligibility for practice in energy storage devices with electrochemical strength up to 2.85 V. The TNM data based on ion transference number (tion) and electron transference number (te) determine the identity of the main charge carrier, ion. The redox peaks in the cyclic voltammograms have not been observed as evidence of charge accumulation other than the Faradaic process at the electrode-electrolyte interface. The GCD plot reveals a triangle shape and records arelatively low drop voltage. The high average efficiency of 90% with low ESR has been achieved over 500 cycles, indicating compatibility between electrolyte and electrode. The average power density and energy density of the plasticisedare 700 W/kg and 8 Wh/kg, respectively.

11.
Polymers (Basel) ; 14(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36236087

ABSTRACT

The effect of ethynylene or ethynylene-thiophene spacers on the band gap of alternating polymers, containing 4,9-naphthothiadiazole units as an acceptor and 2,7-linked fluorene repeat units as a donor, were investigated. The Sonogashira coupling reaction was employed to prepare the two novel copolymers, namely ((9,9-dioctyl-fluorene)-2,7-diethynylene-alt-4,9-2,1,3-naphthothiadiazole (PFDENT) and poly(5,5'-(9,9-dioctyl-fluorene-2,7-diyl)bis(ethynyl-2-thienyl)-alt-4,9-(2,1,3-naphthothiadiazole) (PFDTENT). The optical, electrochemical and thermal properties of the two obtained polymers were widely investigated and compared. Both resulting polymers showed low solubility in common organic solvents and moderate molecular weights. It is believed that the introduction of acetylene linkers rather than acetylene-thiophene spacers on the polymer chains reduces the steric hindrance between the donor and acceptor units which leads to the adoption of more planar structures of polymeric chains, resulting in decreased molecular weights of the resulting conjugated polymers. Thus, both ethynylene-based polymers and ethynylene-thiophene-based polymers showed red-shifted absorption maxima compared to their counterpart (thiophene-based polymer), owing to the adoption of more planar structures. Optical studies revealed that the new ethynylene and ethynylene-thiophene-based polymers displayed low band gaps compared to their thiophene analogue polymer PFDTNT. Both resulting polymers showed good thermal stability. X-ray diffraction (XRD) patterns of both polymers revealed that PFDENT and PFDTENT possessed an amorphous nature in solid state.

12.
Heliyon ; 8(10): e11048, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36281392

ABSTRACT

Bacterial Cellulose (BC) derived from local market or symbiotic culture of bacteria and yeast (SCOBY) was employed as the polymer matrix for hydroxyl multi-walled carbon nanotube (MWCNT-OH)-based electrochemical double-layer capacitor (EDLC). Chitosan (CS)-sodium iodide (NaI)-glycerol (Gly) electrolyte systems were used as the polymer electrolyte. CS-NaI-Gly electrolyte possesses conductivity, potential stability and ionic transference number of (1.20 ± 0.26) × 10-3 S cm-2, 2.5 V and 0.99, respectively. For the electrodes, MWCNT-OH was observed to be well dispersed in the matrix of BC which was obtained via FESEM analysis. The inclusion of MWCNT-OH reduced the crystallinity of the BC polymeric structure. From EIS measurement, it was verified that the presence of MWCNT-OH decreased the electron transfer resistance of BC-based electrodes. Cyclic voltammetry (CV) showed that the shape of the CV plots changed to a rectangular-like shape plot as more MWCNT were added, thus verifying the capacitive behavior. Various amount of MWCNT-OH was used in the fabrication of the EDLC where it was discovered that more MWCNT-OH leads to a better EDLC performance. The EDLC was tested for 5000 complete charge-discharge cycles. The optimum performance of this low voltage EDLC was obtained with 0.1 g MWCNT where the average specific capacitance was 8.80 F g-1. The maximum power and energy density of the fabricated EDLC were 300 W kg-1 and 1.6 W h kg-1, respectively.

13.
Polymers (Basel) ; 14(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956709

ABSTRACT

In this work, bacterial cellulose (BC)-based polymer derived from a symbiotic culture of bacteria and yeast (SCOBY) are optimized as both electrodes and electrolytes to fabricate a flexible and free-standing supercapacitor. BC is a multifunction and versatile polymer. Montmorillonite (MMT) and sodium bromide (NaBr) are used to improve mechanical strength and as the ionic source, respectively. From XRD analysis, it is found that the addition of MMT and NaBr has reduced the crystallinity of the electrolyte. Most interaction within the electrolyte happens in the region of the OH band, as verified using FTIR analysis. A maximum room temperature conductivity of (1.09 ± 0.02) × 10-3 S/cm is achieved with 30 wt.% NaBr. The highest conducting SCOBY-based electrolytes have a decompose voltage and ionic transference number of 1.48 V and 0.97, respectively. The multiwalled carbon nanotube is employed as the active material held by the fibrous network of BC. Cyclic voltammetry shows a rectangular shape CV plot with the absence of a redox peak. The supercapacitor is charged and discharged in a zig-zag-shaped Perspex plate for 1000 cycles with a decent performance.

14.
Membranes (Basel) ; 12(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36005684

ABSTRACT

Stable and ionic conducting electrolytes are needed to make supercapacitors more feasible, because liquid electrolytes have leakage problems and easily undergo solvent evaporation. Polymer-based electrolytes meet the criteria, yet they lack good efficiency due to limited segmental motion. Since metal complexes have crosslinking centers that can be coordinated with the polymer segments, they are regarded as an adequate method to improve the performance of the polymer-based electrolytes. To prepare plasticized proton conducting polymer composite (PPC), a simple and successful process was used. Using a solution casting process, methylcellulose and dextran were blended and impregnated with ammonium thiocyanate and zinc metal complex. A range of electrochemical techniques were used to analyze the PPC, including transference number measurement (TNM), linear sweep voltammetry (LSV), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The ionic conductivity of the prepared system was found to be 3.59 × 10-3 S/cm using the EIS method. The use of glycerol plasticizer improves the transport characteristics, according to the findings. The carrier species is found to have ionic mobility of 5.77 × 10-5 cm2 V-1 s-1 and diffusion coefficient of 1.48 × 10-6 cm2 s-1 for the carrier density 3.4 × 1020 cm-3. The TNM revealed that anions and cations were the predominant carriers in electrolyte systems, with an ionic transference value of 0.972. The LSV approach demonstrated that, up to 2.05 V, the film was stable, which is sufficient for energy device applications. The prepared PPC was used to create an electrical double-layer capacitor (EDLC) device. The CV plot exhibited the absence of Faradaic peaks in the CV plot, making it practically have a rectangular form. Using the GCD experiment, the EDLC exhibited low equivalence series resistance of only 65 Ω at the first cycle. The average energy density, power density, and specific capacitance values were determined to be 15 Wh/kg, 350 W/kg, and 128 F/g, respectively.

15.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012415

ABSTRACT

A facile methodology system for synthesizing solid polymer electrolytes (SPEs) based on methylcellulose, dextran, lithium perchlorate (as ionic sources), and glycerol (such as a plasticizer) (MC:Dex:LiClO4:Glycerol) has been implemented. Fourier transform infrared spectroscopy (FTIR) and two imperative electrochemical techniques, including linear sweep voltammetry (LSV) and electrical impedance spectroscopy (EIS), were performed on the films to analyze their structural and electrical properties. The FTIR spectra verify the interactions between the electrolyte components. Following this, a further calculation was performed to determine free ions (FI) and contact ion pairs (CIP) from the deconvolution of the peak associated with the anion. It is verified that the electrolyte containing the highest amount of glycerol plasticizer (MDLG3) has shown a maximum conductivity of 1.45 × 10-3 S cm-1. Moreover, for other transport parameters, the mobility (µ), number density (n), and diffusion coefficient (D) of ions were enhanced effectively. The transference number measurement (TNM) of electrons (tel) was 0.024 and 0.976 corresponding to ions (tion). One of the prepared samples (MDLG3) had 3.0 V as the voltage stability of the electrolyte.


Subject(s)
Glycerol , Plasticizers , Biopolymers/chemistry , Electrolytes/chemistry , Ion Transport , Ions , Lithium
16.
Materials (Basel) ; 15(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36013716

ABSTRACT

The attention to a stable and ionic conductive electrolyte is driven by the limitations of liquid electrolytes, particularly evaporation and leakage, which restrain their widespread use for electrochemical device applications. Solid polymer electrolyte (SPE) is considered to be a potential alternative since it possesses high safety compared to its counterparts. However, it still suffers from low device efficiency due to an incomplete understanding of the mechanism of ion transport parameters. Here, we present a simple in situ solution casting method for the production of polymer-based electrolytes using abundantly available methylcellulose (MC) doped at different weight percentages of potassium thiocyanate (KSCN) salt. Fourier transform infrared (FTIR), and electrochemical impedance spectroscopy (EIS) methods were used to characterize the prepared samples. Based on EIS simulation and FTIR deconvolution associated with the SCN anion peak, various ion transport parameters were determined. The host MC medium and KSCN salt have a strong interaction, which was evident from both peak shifting and intensity alteration of FTIR spectra. From the EIS modeling, desired electric circuits correlated with ion movement and chain polarization were drawn. The highest ionic conductivity of 1.54 × 10-7 S cm-1 is determined from the fitted EIS curve for the film doped with 30 wt.% of KSCN salt. From the FTIR deconvoluted peak, free ions, ions in contact with one another, and ion aggregates were separated. The extracted ion transport parameters from the EIS method and FTIR spectra of the SCN anion band confirm that both increased carrier concentration and their mobility were crucial in improving the overall conductivity of the electrolyte. The dielectric investigations were further used to understand the conductivity of the films. High dielectric constants were observed at low frequencies for all MC:KSCN systems. The dispersion with a high dielectric constant in the low-frequency band is ascribed to the dielectric polarization. The wide shift of M″ peak towards the high frequency was evidenced by the MC-based electrolyte impregnated with 30 wt.% of KSCN salt, revealing the improved ionic movement assisted with chain segmental motion. The AC conductivity pattern was influenced by salt concentration.

17.
Materials (Basel) ; 15(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35329595

ABSTRACT

In the present article, a simple technique is provided for the fabrication of a polymer electrolyte system composed of polyvinyl chloride (PVC) and doped with varying content of ammonium iodide (NH4I) salt using solution-casting methodology. The influences of NH4I on the structural, electrochemical, and electrical properties of PVC have been investigated using X-ray diffraction, electrochemical impedance spectroscopy (EIS), and dielectric properties. The X-ray study reveals the amorphous nature of the polymer-salt complex. The EIS measurement revealed an ionic conductivity of 5.57 × 10-10 S/cm for the electrolyte containing 10 wt.% of salt. Our hypothesis is provided, which demonstrated the likelihood of designing highly resistive solid electrolytes using the concept of a polymer electrolyte. Here, the results showed that the resistivity of the studied samples is not dramatically decreased with increasing NH4I. Bode plots distinguish the decrease in resistance or impedance with increasing salt contents. Dielectric measurements revealed a decrease in the dielectric constant with the increase of NH4I content in the PVC polymer. The relaxation time and dielectric properties of the electrolytes confirmed their non-Debye type behavior. This pattern has been validated by the existence of an incomplete semicircle in the Argand plot. Insulation materials with low εr have found widespread applications in electronic devices due to the reduction in delay, power dissipation, and crosstalk. In addition, an investigation of real and imaginary parts of electric modulus leads to the minimized electrode polarization being reached.

18.
Gels ; 8(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35323266

ABSTRACT

In the current study, flexible films of polyvinyl alcohol (PVA): chitosan (CS) solid polymer blend electrolytes (PBEs) with high ion transport property close enough to gel based electrolytes were prepared with the aid of casting methodology. Glycerol (GL) as a plasticizer and sodium bromide (NaBr) as an ionic source provider are added to PBEs. The flexible films have been examined for their structural and electrical properties. The GL content changed the brittle and solid behavior of the films to a soft manner. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) methods were used to examine the structural behavior of the electrolyte films. X-ray diffraction investigation revealed that the crystalline character of PVA:CS:NaBr declined with increasing GL concentration. The FTIR investigation hypothesized the interaction between polymer mix salt systems and added plasticizer. Infrared (FTIR) band shifts and fluctuations in intensity have been found. The ion transport characteristics such as mobility, carrier density, and diffusion were successfully calculated using the experimental impedance data that had been fitted with EEC components and dielectric parameters. CS:PVA at ambient temperature has the highest ionic conductivity of 3.8 × 10 S/cm for 35 wt.% of NaBr loaded with 55 wt.% of GL. The high ionic conductivity and improved transport properties revealed the suitableness of the films for energy storage device applications. The dielectric constant and dielectric loss were higher at lower frequencies. The relaxation nature of the samples was investigated using loss tangent and electric modulus plots. The peak detected in the spectra of tanδ and M" plots and the distribution of data points are asymmetric besides the peak positions. The movements of ions are not free from the polymer chain dynamics due to viscoelastic relaxation being dominant. The distorted arcs in the Argand plot have confirmed the viscoelastic relaxation in all the prepared films.

19.
Membranes (Basel) ; 12(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323759

ABSTRACT

This work presents the fabrication of polymer electrolyte membranes (PEMs) that are made of polyvinyl alcohol-methylcellulose (PVA-MC) doped with various amounts of ammonium iodide (NH4I). The structural and electrical properties of the polymer blend electrolyte were performed via the acquisition of Fourier Transform Infrared (FTIR) and electrical impedance spectroscopy (EIS), respectively. The interaction among the components of the electrolyte was confirmed via the FTIR approach. Electrical impedance spectroscopy (EIS) showed that the whole conductivity of complexes of PVA-MC was increased beyond the addition of NH4I. The application of EEC modeling on experimental data of EIS was helpful to calculate the ion transport parameters and detect the circuit elements of the films. The sample containing 40 wt.% of NH4I salt exhibited maximum ionic conductivity (7.01 × 10-8) S cm-1 at room temperature. The conductivity behaviors were further emphasized from the dielectric study. The dielectric constant, ε' and loss, ε'' values were recorded at high values within the low-frequency region. The peak appearance of the dielectric relaxation analysis verified the non-Debye type of relaxation mechanism was clarified via the peak appearance of the dielectric relaxation. For further confirmation, the transference number measurement (TNM) of the PVA-MC-NH4I electrolyte was analyzed in which ions were primarily entities for the charge transfer process. The linear sweep voltammetry (LSV) shows a relatively electrochemically stable electrolyte where the voltage was swept linearly up to 1.6 V. Finally, the sample with maximum conductivity, ion dominance of tion and relatively wide breakdown voltage were found to be 0.88 and 1.6 V, respectively. As the ions are the majority charge carrier, this polymer electrolyte could be considered as a promising candidate to be used in electrochemical energy storage devices for example electrochemical double-layer capacitor (EDLC) device.

20.
Molecules ; 27(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35335328

ABSTRACT

In this work, the green method was used to synthesize Sn2+-metal complex by polyphenols (PPHs) of black tea (BT). The formation of Sn2+-PPHs metal complex was confirmed through UV-Vis and FTIR methods. The FTIR method shows that BT contains NH and OH functional groups, conjugated double bonds, and PPHs which are important to create the Sn2+-metal complexes. The synthesized Sn2+-PPHs metal complex was used successfully to decrease the optical energy band gap of PVA polymer. XRD method showed that the amorphous phase increased with increasing the metal complexes. The FTIR and XRD analysis show the complex formation between Sn2+-PPHs metal complex and PVA polymer. The enhancement in the optical properties of PVA was evidenced via UV-visible spectroscopy method. When Sn2+-PPHs metal complex was loaded to PVA, the refractive index and dielectric constant were improved. In addition, the absorption edge was also decreased to lower photon. The optical energy band gap decreases from 6.4 to 1.8 eV for PVAloaded with 30% (v/v) Sn2+-PPHs metal complex. The variations of dielectric constant versus wavelength of photon are examined to measure localized charge density (N/m*) and high frequency dielectric constant. By increasing Sn2+-PPHs metal complex, the N/m* are improved from 3.65 × 1055 to 13.38 × 1055 m-3 Kg-1. The oscillator dispersion energy (Ed) and average oscillator energy (Eo) are measured. The electronic transition natures in composite films are determined based on the Tauc's method, whereas close examinations of the dielectric loss parameter are also held to measure the energy band gap.


Subject(s)
Coordination Complexes , Polymers , Polyphenols , Refractometry , Tea
SELECTION OF CITATIONS
SEARCH DETAIL
...